Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt

نویسندگان

  • Paul D. Brooks
  • Mark W. Williams
  • Steven K. Schmidt
  • PAUL D. BROOKS
  • MARK W. WILLIAMS
  • STEVEN K. SCHMIDT
چکیده

Recent work in seasonally snow covered ecosystems has identified thawed soil and high levels of heterotrophic activity throughout the winter under consistent snow cover. We performed measurements during the winter of 1994 to determine how the depth and timing of seasonal snow cover affect soil microbial populations, surface water NO loss during snowmelt, and plant N availability early in the growing season. Soil under early accumulating, consistent snow cover remained thawed during most of the winter and both microbial biomass and soil inorganic N pools gradually increased under the snowpack. At the initiation of snowmelt, microbial biomass N pools increased from 3.0 to 5.9 g N m-2, concurrent with a decrease in soil inorganic N pools. During the latter stages of snowmelt, microbial biomass N pools decreased sharply without a concurrent increase in inorganic N pools or significant leaching losses. In contrast, soil under inconsistent snow cover remained frozen during most of the winter. During snowmelt, microbial biomass initially increased from 1.7 to 3.1 g N m-2 and then decreased as sites became snow-free. In contrast to smaller pool sizes, NO3 export during snowmelt from the inconsistent snow cover sites of 1.14 (?0.511) g N m-2 was significantly greater (p < 0.001) than the 0.27 (?0.16) g N m-2 exported from sites with consistent snow cover. These data suggest that microbial biomass in consistently snow-covered soil provides a significant buffer limiting the export of inorganic N to surface water during snowmelt. However, this buffer is very sensitive to changes in snowpack regime. Therefore, interannual variability in the timing and depth of snowpack accumulation may explain the year to year variability in inorganic N concentrations in surface water these ecosystems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of inorganic nitrogen uptake dynamics following snowmelt and at peak biomass in subalpine grasslands

Subalpine grasslands are highly seasonal environments and likely subject to strong variability in nitrogen (N) dynamics. Plants and microbes typically compete for N acquisition during the growing season and particularly at plant peak biomass. During snowmelt, plants could potentially benefit from a decrease in competition by microbes, leading to greater plant N uptake associated with active gro...

متن کامل

Links between Microbial Population Dynamics and Nitrogen Availability in an Alpine Ecosystem

Past studies of plant–microbe interactions in the alpine nitrogen cycle have revealed a seasonal separation of N use, with plants absorbing N primarily during the summer months and microbes immobilizing N primarily during the autumn months. On the basis of these studies, it has been concluded that competition for N between plants and microbes is minimized along this seasonal gradient. In this s...

متن کامل

Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring

Microbial activity is known to continue during the winter months in cold alpine and Arctic soils often resulting in high microbial biomass. Complex soil nutrient dynamics characterize the transition when soil temperatures approach and exceed 0 1C in spring. At the time of this transition in alphine soils microbial biomass declines dramatically together with soil pools of available nutrients. Th...

متن کامل

Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season....

متن کامل

The Importance of Mesodinium rubrum at Post-Spring Bloom Nutrient and Phytoplankton Dynamics in the Vertically Stratified Baltic Sea

The inter-annual dynamics of the photosynthetic ciliateMesodinium rubrum in the central Gulf of Finland in spring-summer continuum during 5 years were followed. The analysis was mainly based on high-resolution measurements and sampling in the surface layer along the ferry route Tallinn-Helsinki. The main purpose was to analyze the dynamics of M. rubrum biomass, its contribution to the photosynt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997